
Adafruit Bus Device Library
Documentation

Release 1.0

Scott Shawcroft and Tony Dicola

Jan 16, 2019

Contents

1 Installation 3

2 Usage Example 5

3 Contributing 7

4 Building locally 9
4.1 Sphinx documentation . 9

5 Table of Contents 11
5.1 Simple test . 11
5.2 adafruit_bus_device.i2c_device - I2C Bus Device . 12
5.3 adafruit_bus_device.spi_device - SPI Bus Device . 13

6 Indices and tables 15

Python Module Index 17

i

ii

Adafruit Bus Device Library Documentation, Release 1.0

The I2CDevice and SPIDevice helper classes make managing transaction state on a bus easy. For example, they
manage locking the bus to prevent other concurrent access. For SPI devices, it manages the chip select and protocol
changes such as mode. For I2C, it manages the device address.

Contents 1

https://circuitpython.readthedocs.io/projects/bus_device/en/latest/
https://discord.gg/nBQh6qu
https://travis-ci.com/adafruit/Adafruit_CircuitPython_BusDevice

Adafruit Bus Device Library Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

This library is NOT built into CircuitPython to make it easy to update. To install it either follow the directions below
or install the library bundle.

To install:

1. Download and unzip the latest release zip.

2. Copy the unzipped adafruit_bus_device to the lib directory on the CIRCUITPY drive.

3

https://circuitpython.readthedocs.io/en/latest/docs/drivers.html#bundle-installation
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases

Adafruit Bus Device Library Documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Usage Example

See examples/read_register_i2c.py and examples/read_register_spi.py for examples of the module’s usage.

5

Adafruit Bus Device Library Documentation, Release 1.0

6 Chapter 2. Usage Example

CHAPTER 3

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

7

https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/blob/master/CODE_OF_CONDUCT.md

Adafruit Bus Device Library Documentation, Release 1.0

8 Chapter 3. Contributing

CHAPTER 4

Building locally

To build this library locally you’ll need to install the circuitpython-build-tools package.

python3 -m venv .env
source .env/bin/activate
pip install circuitpython-build-tools

Once installed, make sure you are in the virtual environment:

source .env/bin/activate

Then run the build:

circuitpython-build-bundles --filename_prefix adafruit-circuitpython-busdevice --
→˓library_location .

4.1 Sphinx documentation

Sphinx is used to build the documentation based on rST files and comments in the code. First, install dependencies
(feel free to reuse the virtual environment from above):

python3 -m venv .env
source .env/bin/activate
pip install Sphinx sphinx-rtd-theme

Now, once you have the virtual environment activated:

cd docs
sphinx-build -E -W -b html . _build/html

This will output the documentation to docs/_build/html. Open the index.html in your browser to view them. It
will also (due to -W) error out on any warning like Travis will. This is a good way to locally verify it will pass.

9

https://github.com/adafruit/circuitpython-build-tools

Adafruit Bus Device Library Documentation, Release 1.0

10 Chapter 4. Building locally

CHAPTER 5

Table of Contents

5.1 Simple test

Ensure your device works with this simple test.

Listing 1: examples/read_register_i2c.py

1 import busio
2 import board
3 from adafruit_bus_device.i2c_device import I2CDevice
4

5 DEVICE_ADDRESS = 0x68 # device address of DS3231 board
6 A_DEVICE_REGISTER = 0x0E # device id register on the DS3231 board
7

8 # The follow is for I2C communications
9 comm_port = busio.I2C(board.SCL, board.SDA)

10 device = I2CDevice(comm_port, DEVICE_ADDRESS)
11

12 with device as bus_device:
13 bus_device.write(bytes([A_DEVICE_REGISTER]))
14 result = bytearray(1)
15 bus_device.readinto(result)
16

17 print(''.join('{:02x}'.format(x) for x in result))

Listing 2: examples/read_register_spi.py

1 import busio
2 import board
3 import digitalio
4 from adafruit_bus_device.spi_device import SPIDevice
5

6 DEVICE_ADDRESS = 0x68 # device address of BMP280 board
7 A_DEVICE_REGISTER = 0xD0 # device id register on the BMP280 board

(continues on next page)

11

Adafruit Bus Device Library Documentation, Release 1.0

(continued from previous page)

8

9 # The follow is for SPI communications
10 cs = digitalio.DigitalInOut(board.A2)
11 comm_port = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
12 device = SPIDevice(comm_port, cs)
13

14 #pylint: disable-msg=no-member
15 with device as bus_device:
16 bus_device.write(bytes([A_DEVICE_REGISTER]))
17 result = bytearray(1)
18 bus_device.readinto(result)
19

20 print(''.join('{:02x}'.format(x) for x in result))

5.2 adafruit_bus_device.i2c_device - I2C Bus Device

class adafruit_bus_device.i2c_device.I2CDevice(i2c, device_address)
Represents a single I2C device and manages locking the bus and the device address.

Parameters

• i2c (I2C) – The I2C bus the device is on

• device_address (int) – The 7 bit device address

Note: This class is NOT built into CircuitPython. See here for install instructions.

Example:

import busio
from board import *
from adafruit_bus_device.i2c_device import I2CDevice

with busio.I2C(SCL, SDA) as i2c:
device = I2CDevice(i2c, 0x70)
bytes_read = bytearray(4)
with device:

device.readinto(bytes_read)
A second transaction
with device:

device.write(bytes_read)

readinto(buf, **kwargs)
Read into buf from the device. The number of bytes read will be the length of buf.

If start or end is provided, then the buffer will be sliced as if buf[start:end]. This will not cause
an allocation like buf[start:end] will so it saves memory.

Parameters

• buffer (bytearray) – buffer to write into

• start (int) – Index to start writing at

• end (int) – Index to write up to but not include

12 Chapter 5. Table of Contents

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int

Adafruit Bus Device Library Documentation, Release 1.0

write(buf, **kwargs)
Write the bytes from buffer to the device. Transmits a stop bit if stop is set.

If start or end is provided, then the buffer will be sliced as if buffer[start:end]. This will not
cause an allocation like buffer[start:end] will so it saves memory.

Parameters

• buffer (bytearray) – buffer containing the bytes to write

• start (int) – Index to start writing from

• end (int) – Index to read up to but not include

• stop (bool) – If true, output an I2C stop condition after the buffer is written

write_then_readinto(out_buffer, in_buffer, *, out_start=0, out_end=None, in_start=0,
in_end=None, stop=True)

Write the bytes from out_buffer to the device, then immediately reads into in_buffer from the
device. The number of bytes read will be the length of in_buffer. Transmits a stop bit after the write,
if stop is set.

If out_start or out_end is provided, then the output buffer will be sliced as
if out_buffer[out_start:out_end]. This will not cause an allocation like
buffer[out_start:out_end] will so it saves memory.

If in_start or in_end is provided, then the input buffer will be sliced as
if in_buffer[in_start:in_end]. This will not cause an allocation like
in_buffer[in_start:in_end] will so it saves memory.

Parameters

• out_buffer (bytearray) – buffer containing the bytes to write

• in_buffer (bytearray) – buffer containing the bytes to read into

• out_start (int) – Index to start writing from

• out_end (int) – Index to read up to but not include

• in_start (int) – Index to start writing at

• in_end (int) – Index to write up to but not include

• stop (bool) – If true, output an I2C stop condition after the buffer is written

5.3 adafruit_bus_device.spi_device - SPI Bus Device

class adafruit_bus_device.spi_device.SPIDevice(spi, chip_select=None, *, bau-
drate=100000, polarity=0, phase=0,
extra_clocks=0)

Represents a single SPI device and manages locking the bus and the device address.

Parameters

• spi (SPI) – The SPI bus the device is on

• chip_select (DigitalInOut) – The chip select pin object that implements the Digi-
talInOut API.

• extra_clocks (int) – The minimum number of clock cycles to cycle the bus after CS
is high. (Used for SD cards.)

5.3. adafruit_bus_device.spi_device - SPI Bus Device 13

https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/functions.html#bytearray
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#int
https://docs.python.org/3.4/library/functions.html#bool
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI
https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html#digitalio.DigitalInOut
https://docs.python.org/3.4/library/functions.html#int

Adafruit Bus Device Library Documentation, Release 1.0

Note: This class is NOT built into CircuitPython. See here for install instructions.

Example:

import busio
import digitalio
from board import *
from adafruit_bus_device.spi_device import SPIDevice

with busio.SPI(SCK, MOSI, MISO) as spi_bus:
cs = digitalio.DigitalInOut(D10)
device = SPIDevice(spi_bus, cs)
bytes_read = bytearray(4)
The object assigned to spi in the with statements below
is the original spi_bus object. We are using the busio.SPI
operations busio.SPI.readinto() and busio.SPI.write().
with device as spi:

spi.readinto(bytes_read)
A second transaction
with device as spi:

spi.write(bytes_read)

14 Chapter 5. Table of Contents

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

Adafruit Bus Device Library Documentation, Release 1.0

16 Chapter 6. Indices and tables

Python Module Index

a
adafruit_bus_device.i2c_device, 12
adafruit_bus_device.spi_device, 13

17

Adafruit Bus Device Library Documentation, Release 1.0

18 Python Module Index

Index

A
adafruit_bus_device.i2c_device (module), 12
adafruit_bus_device.spi_device (module), 13

I
I2CDevice (class in adafruit_bus_device.i2c_device), 12

R
readinto() (adafruit_bus_device.i2c_device.I2CDevice

method), 12

S
SPIDevice (class in adafruit_bus_device.spi_device), 13

W
write() (adafruit_bus_device.i2c_device.I2CDevice

method), 12
write_then_readinto() (adafruit_bus_device.i2c_device.I2CDevice

method), 13

19

	Installation
	Usage Example
	Contributing
	Building locally
	Sphinx documentation

	Table of Contents
	Simple test
	adafruit_bus_device.i2c_device - I2C Bus Device
	adafruit_bus_device.spi_device - SPI Bus Device

	Indices and tables
	Python Module Index

