

Adafruit CircuitPython BusDevice

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/busdevice/en/latest/][image: Discord]
 [https://discord.gg/nBQh6qu][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/actions/]The I2CDevice and SPIDevice helper classes make managing transaction state
on a bus easy. For example, they manage locking the bus to prevent other
concurrent access. For SPI devices, it manages the chip select and protocol
changes such as mode. For I2C, it manages the device address.

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-busdevice/]. To install for current user:

pip3 install adafruit-circuitpython-busdevice

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-busdevice

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-busdevice

Usage Example

See examples/read_register_i2c.py and examples/read_register_spi.py for examples of the module’s usage.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

API Reference

	adafruit_bus_device.i2c_device - I2C Bus Device

	adafruit_bus_device.spi_device - SPI Bus Device

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/busdevice_read_register_i2c_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	import busio
import board
from adafruit_bus_device.i2c_device import I2CDevice

DEVICE_ADDRESS = 0x68 # device address of DS3231 board
A_DEVICE_REGISTER = 0x0E # device id register on the DS3231 board

The follow is for I2C communications
comm_port = busio.I2C(board.SCL, board.SDA)
device = I2CDevice(comm_port, DEVICE_ADDRESS)

with device as bus_device:
 bus_device.write(bytes([A_DEVICE_REGISTER]))
 result = bytearray(1)
 bus_device.readinto(result)

print(''.join('{:02x}'.format(x) for x in result))

examples/busdevice_read_register_spi_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	import busio
import board
import digitalio
from adafruit_bus_device.spi_device import SPIDevice

DEVICE_ADDRESS = 0x68 # device address of BMP280 board
A_DEVICE_REGISTER = 0xD0 # device id register on the BMP280 board

The follow is for SPI communications
cs = digitalio.DigitalInOut(board.A2)
comm_port = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
device = SPIDevice(comm_port, cs)

#pylint: disable-msg=no-member
with device as bus_device:
 bus_device.write(bytes([A_DEVICE_REGISTER]))
 result = bytearray(1)
 bus_device.readinto(result)

print(''.join('{:02x}'.format(x) for x in result))

adafruit_bus_device.i2c_device - I2C Bus Device

	
class adafruit_bus_device.i2c_device.I2CDevice(i2c, device_address, probe=True)

	Represents a single I2C device and manages locking the bus and the device
address.

	Parameters

	
	i2c (I2C [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C]) – The I2C bus the device is on

	device_address (int [https://docs.python.org/3.4/library/functions.html#int]) – The 7 bit device address

	probe (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Probe for the device upon object creation, default is true

Note

This class is NOT built into CircuitPython. See
here for install instructions.

Example:

import busio
from board import *
from adafruit_bus_device.i2c_device import I2CDevice

with busio.I2C(SCL, SDA) as i2c:
 device = I2CDevice(i2c, 0x70)
 bytes_read = bytearray(4)
 with device:
 device.readinto(bytes_read)
 # A second transaction
 with device:
 device.write(bytes_read)

	
readinto(buf, **kwargs)

	Read into buf from the device. The number of bytes read will be the
length of buf.

If start or end is provided, then the buffer will be sliced
as if buf[start:end]. This will not cause an allocation like
buf[start:end] will so it saves memory.

	Parameters

	
	buffer (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – buffer to write into

	start (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to start writing at

	end (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to write up to but not include

	
write(buf, **kwargs)

	Write the bytes from buffer to the device. Transmits a stop bit if
stop is set.

If start or end is provided, then the buffer will be sliced
as if buffer[start:end]. This will not cause an allocation like
buffer[start:end] will so it saves memory.

	Parameters

	
	buffer (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – buffer containing the bytes to write

	start (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to start writing from

	end (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to read up to but not include

	stop (bool [https://docs.python.org/3.4/library/functions.html#bool]) – If true, output an I2C stop condition after the buffer is written

	
write_then_readinto(out_buffer, in_buffer, *, out_start=0, out_end=None, in_start=0, in_end=None, stop=False)

	Write the bytes from out_buffer to the device, then immediately
reads into in_buffer from the device. The number of bytes read
will be the length of in_buffer.

If out_start or out_end is provided, then the output buffer
will be sliced as if out_buffer[out_start:out_end]. This will
not cause an allocation like buffer[out_start:out_end] will so
it saves memory.

If in_start or in_end is provided, then the input buffer
will be sliced as if in_buffer[in_start:in_end]. This will not
cause an allocation like in_buffer[in_start:in_end] will so
it saves memory.

	Parameters

	
	out_buffer (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – buffer containing the bytes to write

	in_buffer (bytearray [https://docs.python.org/3.4/library/functions.html#bytearray]) – buffer containing the bytes to read into

	out_start (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to start writing from

	out_end (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to read up to but not include

	in_start (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to start writing at

	in_end (int [https://docs.python.org/3.4/library/functions.html#int]) – Index to write up to but not include

	stop (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Deprecated

adafruit_bus_device.spi_device - SPI Bus Device

	
class adafruit_bus_device.spi_device.SPIDevice(spi, chip_select=None, *, baudrate=100000, polarity=0, phase=0, extra_clocks=0)

	Represents a single SPI device and manages locking the bus and the device
address.

	Parameters

	
	spi (SPI [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI]) – The SPI bus the device is on

	chip_select (DigitalInOut [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/DigitalInOut.html#digitalio.DigitalInOut]) – The chip select pin object that implements the
DigitalInOut API.

	extra_clocks (int [https://docs.python.org/3.4/library/functions.html#int]) – The minimum number of clock cycles to cycle the bus after CS is high.
(Used for SD cards.)

Note

This class is NOT built into CircuitPython. See
here for install instructions.

Example:

import busio
import digitalio
from board import *
from adafruit_bus_device.spi_device import SPIDevice

with busio.SPI(SCK, MOSI, MISO) as spi_bus:
 cs = digitalio.DigitalInOut(D10)
 device = SPIDevice(spi_bus, cs)
 bytes_read = bytearray(4)
 # The object assigned to spi in the with statements below
 # is the original spi_bus object. We are using the busio.SPI
 # operations busio.SPI.readinto() and busio.SPI.write().
 with device as spi:
 spi.readinto(bytes_read)
 # A second transaction
 with device as spi:
 spi.write(bytes_read)

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 adafruit_bus_device	

 	
 	
 adafruit_bus_device.i2c_device	

 	
 	
 adafruit_bus_device.spi_device	

Index

 A
 | I
 | R
 | S
 | W

A

 	
 	adafruit_bus_device.i2c_device (module)

 	
 	adafruit_bus_device.spi_device (module)

I

 	
 	I2CDevice (class in adafruit_bus_device.i2c_device)

R

 	
 	readinto() (adafruit_bus_device.i2c_device.I2CDevice method)

S

 	
 	SPIDevice (class in adafruit_bus_device.spi_device)

W

 	
 	write() (adafruit_bus_device.i2c_device.I2CDevice method)

 	
 	write_then_readinto() (adafruit_bus_device.i2c_device.I2CDevice method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Adafruit CircuitPython BusDevice

 		
 Simple test

 		
 adafruit_bus_device.i2c_device - I2C Bus Device

 		
 adafruit_bus_device.spi_device - SPI Bus Device

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

