

Introduction

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/ds1307/en/latest/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_DS1307/actions/]This is a great battery-backed real time clock (RTC) that allows your
microcontroller project to keep track of time even if it is reprogrammed,
or if the power is lost. Perfect for datalogging, clock-building,
time stamping, timers and alarms, etc. The DS1307 is the most popular
RTC - but it requires 5V power to work.

The DS1307 is simple and inexpensive but not a high precision device. It may
lose or gain up to two seconds a day. For a high-precision, temperature
compensated alternative, please check out the
DS3231 precision RTC [https://www.adafruit.com/products/3013/].
If you do not need a DS1307, or you need a 3.3V-power/logic capable RTC
please check out our affordable
PCF8523 RTC breakout [https://www.adafruit.com/products/3295].

[image: DS1307]

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

	Bus Device [https://github.com/adafruit/Adafruit_CircuitPython_BusDevice]

	Register [https://github.com/adafruit/Adafruit_CircuitPython_Register]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-ds1307/]. To install for current user:

pip3 install adafruit-circuitpython-ds1307

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-ds1307

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-ds1307

Usage Notes

Of course, you must import the library to use it:

import board
import adafruit_ds1307
import time

All the Adafruit RTC libraries take an instantiated and active I2C object
(from the board library) as an argument to their constructor. The way to
create an I2C object depends on the board you are using. For boards with labeled
SCL and SDA pins, you can:

import board

Now, to initialize the I2C bus:

i2c = board.I2C()

Once you have created the I2C interface object, you can use it to instantiate
the RTC object:

rtc = adafruit_ds1307.DS1307(i2c)

To set the time, you need to set datetime to a time.struct_time [https://docs.python.org/3.4/library/time.html#time.struct_time] object:

rtc.datetime = time.struct_time((2017,1,9,15,6,0,0,9,-1))

After the RTC is set, you retrieve the time by reading the datetime
attribute and access the standard attributes of a struct_time such as tm_year,
tm_hour and tm_min.

t = rtc.datetime
print(t)
print(t.tm_hour, t.tm_min)

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_DS1307/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

API Reference

	adafruit_ds1307 - DS1307 Real Time Clock module
	Implementation Notes

Tutorials

	Adafruit DS1307 Real Time Clock Assembled Breakout Board Learning Guide [https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit]

Related Products

	Adafruit DS1307 Real Time Clock Assembled Breakout Board [https://www.adafruit.com/product/3296]

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_DS1307/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/ds1307_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of reading and writing the time for the DS1307 real-time clock.
Change the if False to if True below to set the time, otherwise it will just
print the current date and time every second. Notice also comments to adjust
for working with hardware vs. software I2C.

import time
import board
import adafruit_ds1307

i2c = board.I2C()
rtc = adafruit_ds1307.DS1307(i2c)

Lookup table for names of days (nicer printing).
days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")

pylint: disable-msg=using-constant-test
if False: # change to True if you want to set the time!
 # year, mon, date, hour, min, sec, wday, yday, isdst
 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))
 # you must set year, mon, date, hour, min, sec and weekday
 # yearday is not supported, isdst can be set but we don't do anything with it at this time
 print("Setting time to:", t) # uncomment for debugging
 rtc.datetime = t
 print()
pylint: enable-msg=using-constant-test

Main loop:
while True:
 t = rtc.datetime
 # print(t) # uncomment for debugging
 print(
 "The date is {} {}/{}/{}".format(
 days[int(t.tm_wday)], t.tm_mday, t.tm_mon, t.tm_year
)
)
 print("The time is {}:{:02}:{:02}".format(t.tm_hour, t.tm_min, t.tm_sec))
 time.sleep(1) # wait a second

adafruit_ds1307 - DS1307 Real Time Clock module

CircuitPython library to support DS1307 Real Time Clock (RTC).

This library supports the use of the DS1307-based RTC in CircuitPython.

Beware that most CircuitPython compatible hardware are 3.3v logic level! Make
sure that the input pin is 5v tolerant.

	Author(s): Philip R. Moyer and Radomir Dopieralski for Adafruit Industries

Implementation Notes

Hardware:

	Adafruit DS1307 RTC breakout [https://www.adafruit.com/products/3296] (Product ID: 3296)

Software and Dependencies:

	Adafruit CircuitPython firmware for the supported boards:
https://circuitpython.org/downloads

	Adafruit’s Register library: https://github.com/adafruit/Adafruit_CircuitPython_Register

	Adafruit’s Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

Notes:

	Milliseconds are not supported by this RTC.

	Alarms and timers are not supported by this RTC.

	Datasheet: https://datasheets.maximintegrated.com/en/ds/DS1307.pdf

	
class adafruit_ds1307.DS1307(i2c_bus)[source]

	Interface to the DS1307 RTC.

	Parameters

	i2c_bus (I2C [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.I2C]) – The I2C bus the device is connected to

Quickstart: Importing and using the device

Here is an example of using the DS1307 class.
First you will need to import the libraries to use the sensor

import time
import board
import adafruit_ds1307

Once this is done you can define your board.I2C [https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/index.html#board.I2C] object and define your sensor object

i2c = board.I2C() # uses board.SCL and board.SDA
rtc = adafruit_ds1307.DS1307(i2c)

Now you can give the current time to the device.

t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))
rtc.datetime = t

You can access the current time accessing the datetime attribute.

current_time = rtc.datetime

	
datetime

	Gets the current date and time or sets the current date and time then starts the
clock.

	
datetime_register

	Current date and time.

	
disable_oscillator

	True if the oscillator is disabled.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 adafruit_ds1307	

Index

 A
 | D

A

 	
 	adafruit_ds1307 (module)

D

 	
 	datetime (adafruit_ds1307.DS1307 attribute)

 	datetime_register (adafruit_ds1307.DS1307 attribute)

 	
 	disable_oscillator (adafruit_ds1307.DS1307 attribute)

 	DS1307 (class in adafruit_ds1307)

 Source code for adafruit_ds1307

SPDX-FileCopyrightText: 2016 Philip R. Moyer for Adafruit Industries
SPDX-FileCopyrightText: 2016 Radomir Dopieralski for Adafruit Industries
#
SPDX-License-Identifier: MIT

pylint: disable=too-few-public-methods

"""
`adafruit_ds1307` - DS1307 Real Time Clock module
===

CircuitPython library to support DS1307 Real Time Clock (RTC).

This library supports the use of the DS1307-based RTC in CircuitPython.

Beware that most CircuitPython compatible hardware are 3.3v logic level! Make
sure that the input pin is 5v tolerant.

* Author(s): Philip R. Moyer and Radomir Dopieralski for Adafruit Industries

Implementation Notes

Hardware:

* Adafruit `DS1307 RTC breakout <https://www.adafruit.com/products/3296>`_ (Product ID: 3296)

Software and Dependencies:

* Adafruit CircuitPython firmware for the supported boards:
 https://circuitpython.org/downloads

* Adafruit's Register library: https://github.com/adafruit/Adafruit_CircuitPython_Register

* Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

Notes:

#. Milliseconds are not supported by this RTC.
#. Alarms and timers are not supported by this RTC.
#. Datasheet: https://datasheets.maximintegrated.com/en/ds/DS1307.pdf

"""

from adafruit_bus_device.i2c_device import I2CDevice
from adafruit_register import i2c_bit
from adafruit_register import i2c_bcd_datetime

__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_DS1307.git"

[docs]class DS1307:
 """Interface to the DS1307 RTC.

 :param ~busio.I2C i2c_bus: The I2C bus the device is connected to

 Quickstart: Importing and using the device

 Here is an example of using the :class:`DS1307` class.
 First you will need to import the libraries to use the sensor

 .. code-block:: python

 import time
 import board
 import adafruit_ds1307

 Once this is done you can define your `board.I2C` object and define your sensor object

 .. code-block:: python

 i2c = board.I2C() # uses board.SCL and board.SDA
 rtc = adafruit_ds1307.DS1307(i2c)

 Now you can give the current time to the device.

 .. code-block:: python

 t = time.struct_time((2017, 10, 29, 15, 14, 15, 0, -1, -1))
 rtc.datetime = t

 You can access the current time accessing the :attr:`datetime` attribute.

 .. code-block:: python

 current_time = rtc.datetime

 """

 disable_oscillator = i2c_bit.RWBit(0x0, 7)
 """True if the oscillator is disabled."""

 datetime_register = i2c_bcd_datetime.BCDDateTimeRegister(0x00)
 """Current date and time."""

 def __init__(self, i2c_bus):
 self.i2c_device = I2CDevice(i2c_bus, 0x68)

 # Try and verify this is the RTC we expect by checking the rate select
 # control bits which are 1 on reset and shouldn't ever be changed.
 buf = bytearray(2)
 buf[0] = 0x07
 with self.i2c_device as i2c:
 i2c.write_then_readinto(buf, buf, out_end=1, in_start=1)

 if (buf[1] & 0b00000011) != 0b00000011:
 raise ValueError("Unable to find DS1307 at i2c address 0x68.")

 @property
 def datetime(self):
 """Gets the current date and time or sets the current date and time then starts the
 clock."""
 return self.datetime_register

 @datetime.setter
 def datetime(self, value):
 self.disable_oscillator = False
 self.datetime_register = value

 All modules for which code is available

	adafruit_ds1307

 _static/ajax-loader.gif

_static/3296-00.jpg

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/3296-00.jpg

_static/file.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 adafruit_ds1307 - DS1307 Real Time Clock module

 		
 Implementation Notes

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

