

Introduction

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/tlc59711/en/latest/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/Adafruit_CircuitPython_TLC59711/actions/]CircuitPython module for the TLC59711 16-bit 12 channel LED PWM driver.

Dependencies

This driver depends on:

	Adafruit CircuitPython [https://github.com/adafruit/circuitpython]

Please ensure all dependencies are available on the CircuitPython filesystem.
This is easily achieved by downloading
the Adafruit library and driver bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle].

Installing from PyPI

On supported GNU/Linux systems like the Raspberry Pi, you can install the driver locally from
PyPI [https://pypi.org/project/adafruit-circuitpython-tlc59711/]. To install for current user:

pip3 install adafruit-circuitpython-tlc59711

To install system-wide (this may be required in some cases):

sudo pip3 install adafruit-circuitpython-tlc59711

To install in a virtual environment in your current project:

mkdir project-name && cd project-name
python3 -m venv .env
source .env/bin/activate
pip3 install adafruit-circuitpython-tlc59711

Usage Example

See examples/tlc59711_simpletest.py for a demo of the usage.

Contributing

Contributions are welcome! Please read our Code of Conduct [https://github.com/adafruit/Adafruit_CircuitPython_TLC59711/blob/master/CODE_OF_CONDUCT.md]
before contributing to help this project stay welcoming.

Documentation

For information on building library documentation, please check out this guide [https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/sharing-our-docs-on-readthedocs#sphinx-5-1].

Table of Contents

Examples

	Simple test

API Reference

	adafruit_tlc59711
	Implementation Notes

Related Products

	Adafruit 12-Channel 16-bit PWM LED Driver - SPI Interface - TLC59711 [https://www.adafruit.com/product/1455]

Other Links

	Download [https://github.com/adafruit/Adafruit_CircuitPython_TLC59711/releases/latest]

	CircuitPython Reference Documentation [https://circuitpython.readthedocs.io]

	CircuitPython Support Forum [https://forums.adafruit.com/viewforum.php?f=60]

	Discord Chat [https://adafru.it/discord]

	Adafruit Learning System [https://learn.adafruit.com]

	Adafruit Blog [https://blog.adafruit.com]

	Adafruit Store [https://www.adafruit.com]

Indices and tables

	Index

	Module Index

	Search Page

Simple test

Ensure your device works with this simple test.

examples/tlc59711_simpletest.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

	# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple demo of the TLC59711 16-bit 12 channel LED PWM driver.
Shows setting channel values in a few ways.
Author: Tony DiCola
import board
import busio

import adafruit_tlc59711

Define SPI bus connected to chip. You only need the clock and MOSI (output)
line to use this chip.
spi = busio.SPI(board.SCK, MOSI=board.MOSI)

Define the TLC59711 instance.
leds = adafruit_tlc59711.TLC59711(spi)
Optionally you can disable the auto_show behavior that updates the chip
as soon as any channel value is written. The default is True/on but you can
disable and explicitly call show to control when updates happen for better
animation or atomic RGB LED updates.
leds = adafruit_tlc59711.TLC59711(spi, auto_show=False)

There are a couple ways to control the channels of the chip.
The first is using an interface like a strip of NeoPixels. Index into the
class for the channel and set or get its R, G, B tuple value. Note the
component values are 16-bit numbers that range from 0-65535 (off to full
brightness). Remember there are only 4 channels available too (0 to 3).
For example set channel 0 (R0, G0, B0) to half brightness:
leds[0] = (32767, 32767, 32767)
Dont forget to call show if you disabled auto_show above.
leds.show()

Or to set channel 1 to full red only (green and blue off).
leds[1] = (65535, 0, 0)

You can also explicitly control each R0, G0, B0, R1, B1, etc. channel
by getting and setting its 16-bit value directly with properties.
For example set channel 2 to full green (i.e. G2 to maximum):
leds.g2 = 65535
Again don't forget to call show if you disabled auto_show above.
leds.show()

The chip also supports global brightness channels to change the red, green,
blue colors of all 4 channels at once. These are 7-bit values that range
from 0-127. Get and set them with the red_brightness, green_brightness,
and blue_brightness properties and again be sure to call show if you
disabled auto_show.
For example set the red channel to half brightness globally.
leds.red_brightness = 63
Don't forget to call show if you disabled auto_show above.
leds.show()

adafruit_tlc59711

CircuitPython module for the TLC59711 16-bit 12 channel LED PWM driver. See
examples/simpletest.py for a demo of the usage.

	Author(s): Tony DiCola

Implementation Notes

Hardware:

	Adafruit 12-Channel 16-bit PWM LED Driver - SPI Interface - TLC59711 [https://www.adafruit.com/product/1455] (Product ID: 1455)

Software and Dependencies:

	Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
https://github.com/adafruit/circuitpython/releases

	
class adafruit_tlc59711.TLC59711(spi, *, auto_show=True)[source]

	TLC59711 16-bit 12 channel LED PWM driver. This chip is designed to
drive 4 RGB LEDs with 16-bit PWM control of each LED. The class has an
interface much like that of NeoPixels with attribute access to the 4
RGB channels (note they are 16-bit values). Or you can access each
independent channel by name (r0, g0, b0, r1, b1, etc.) as properties for
fine-grained control.

	Parameters

	
	spi (SPI [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.SPI]) – An instance of the SPI bus connected to the chip. The clock and
MOSI/outout must be set, the MISO/input is unused.

	auto_show (bool [https://docs.python.org/3.4/library/functions.html#bool]) – This is a boolean that defaults to True and indicates any
change to a channel value will instantly be written to the chip. You might wish to
set this to false if you desire to perform your own atomic operations of channel
values. In that case call the show function after making updates to channel state.

	
blue_brightness

	The blue brightness for all channels (i.e. B0, B1, B2, and B3). This is a 7-bit
value from 0-127.

	
green_brightness

	The green brightness for all channels (i.e. G0, G1, G2, and G3). This is a
7-bit value from 0-127.

	
red_brightness

	The red brightness for all channels (i.e. R0, R1, R2, and R3). This is a 7-bit
value from 0-127.

	
show()[source]

	Write out the current LED PWM state to the chip. This is only necessary if
auto_show was set to false in the initializer.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 adafruit_tlc59711	

Index

 A
 | B
 | G
 | R
 | S
 | T

A

 	
 	adafruit_tlc59711 (module)

B

 	
 	blue_brightness (adafruit_tlc59711.TLC59711 attribute)

G

 	
 	green_brightness (adafruit_tlc59711.TLC59711 attribute)

R

 	
 	red_brightness (adafruit_tlc59711.TLC59711 attribute)

S

 	
 	show() (adafruit_tlc59711.TLC59711 method)

T

 	
 	TLC59711 (class in adafruit_tlc59711)

 Source code for adafruit_tlc59711

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
#
SPDX-License-Identifier: MIT

"""
`adafruit_tlc59711`
==

CircuitPython module for the TLC59711 16-bit 12 channel LED PWM driver. See
examples/simpletest.py for a demo of the usage.

* Author(s): Tony DiCola

Implementation Notes

Hardware:

* Adafruit `12-Channel 16-bit PWM LED Driver - SPI Interface - TLC59711
 <https://www.adafruit.com/product/1455>`_ (Product ID: 1455)

Software and Dependencies:

* Adafruit CircuitPython firmware for the ESP8622 and M0-based boards:
 https://github.com/adafruit/circuitpython/releases
"""
__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_TLC59711.git"

Globally disable invalid-name check as this chip by design has short channel
and register names. It is confusing to rename these from what the datasheet
refers to them as.
pylint: disable=invalid-name

Globally disable too many instance attributes check. Again this is a case
where pylint doesn't have the right context to make this call. The chip by
design has many channels which must be exposed.
pylint: disable=too-many-instance-attributes

Globally disable protected access. Once again pylint can't figure out the
context for using internal decorate classes below. In these cases protectected
access is by design for the internal class.
pylint: disable=protected-access

Yet another pylint issue, it fails to recognize a decorator class by
definition has no public methods. Disable the check.
pylint: disable=too-few-public-methods

def _shift_in(target_byte, val):
 # Shift in a new bit value to the provided target byte. The byte will be
 # shift one position left and a new bit inserted that's a 1 if val is true,
 # of a 0 if false.
 target_byte <<= 1
 if val:
 target_byte |= 0x01
 return target_byte

[docs]class TLC59711:
 """TLC59711 16-bit 12 channel LED PWM driver. This chip is designed to
 drive 4 RGB LEDs with 16-bit PWM control of each LED. The class has an
 interface much like that of NeoPixels with attribute access to the 4
 RGB channels (note they are 16-bit values). Or you can access each
 independent channel by name (r0, g0, b0, r1, b1, etc.) as properties for
 fine-grained control.

 :param ~busio.SPI spi: An instance of the SPI bus connected to the chip. The clock and
 MOSI/outout must be set, the MISO/input is unused.
 :param bool auto_show: This is a boolean that defaults to True and indicates any
 change to a channel value will instantly be written to the chip. You might wish to
 set this to false if you desire to perform your own atomic operations of channel
 values. In that case call the show function after making updates to channel state.
 """

 class _GS_Value:
 # Internal decorator to simplify exposing each 16-bit LED PWM channel.
 # These will get/set the appropriate bytes in the shift register with
 # the specified values.

 def __init__(self, byte_offset):
 # Keep track of the byte within the shift register where this
 # 16-bit value starts. Luckily these are all aligned on byte
 # boundaries. Note the byte order is big endian (MSB first).
 self._byte_offset = byte_offset

 def __get__(self, obj, obj_type):
 # Grab the 16-bit value at the offset for this channel.
 return (obj._shift_reg[self._byte_offset] << 8) | obj._shift_reg[
 self._byte_offset + 1
]

 def __set__(self, obj, val):
 # Set the 16-bit value at the offset for this channel.
 assert 0 <= val <= 65535
 obj._shift_reg[self._byte_offset] = (val >> 8) & 0xFF
 obj._shift_reg[self._byte_offset + 1] = val & 0xFF
 # Write out the new values if auto_show is enabled.
 if obj.auto_show:
 obj._write()

 # Define explicit GS channels (each LED PWM channel) for users to control.
 # See also the __len__ and iterable dunder methods that provide a
 # neopixel-like interface to the GS channel values too. Each has a
 # trade-off in usage so users can decide how they choose to use the class
 # (must change all 3 values at a time with neopixel-like interface vs.
 # direct single channel control with these properties below).
 b3 = _GS_Value(4)
 g3 = _GS_Value(6)
 r3 = _GS_Value(8)

 b2 = _GS_Value(10)
 g2 = _GS_Value(12)
 r2 = _GS_Value(14)

 b1 = _GS_Value(16)
 g1 = _GS_Value(18)
 r1 = _GS_Value(20)

 b0 = _GS_Value(22)
 g0 = _GS_Value(24)
 r0 = _GS_Value(26)

 def __init__(self, spi, *, auto_show=True):
 self._spi = spi
 # This device is just a big 28 byte long shift register without any
 # fancy update protocol. Blast out all the bits to update, that's it!
 self._shift_reg = bytearray(28)
 # Keep track of automatically writing out the state of the PWM channels
 # on any change (auto_show = True). If set to false the user must
 # explicitly call the show method to write out the PWM state to the
 # chip--this is useful for performing atomic updates to LEDs (i.e.
 # changing all the R, G, B channels at once).
 self.auto_show = auto_show
 # Initialize the brightness channel values to max (these are 7-bit
 # values).
 self._bcr = 127
 self._bcg = 127
 self._bcb = 127
 # Initialize external user-facing state for the function control
 # bits of the chip. These aren't commonly used but available and
 # match the nomenclature from the datasheet. Note they won't honor
 # the auto_show property and instead you must manually call show
 # after changing them (reduces the need to make frivolous
 # memory-hogging properties).
 # Set OUTTMG, TMGRST, and DSPRPT to on like the Arduino library.
 self.outtmg = True
 self.extgclk = False
 self.tmgrst = True
 self.dsprpt = True
 self.blank = False

 def _write(self):
 # Write out the current state to the shift register.
 try:
 # Lock the SPI bus and configure it for the shift register.
 while not self._spi.try_lock():
 pass
 self._spi.configure(baudrate=self._spi.frequency, polarity=0, phase=0)
 # Update the preamble of chip state in the first 4 bytes (32-bits)
 # with the write command, function control bits, and brightness
 # control register values.
 self._shift_reg[0] = 0x25 # 0x25 in top 6 bits initiates write.
 # Lower two bits control OUTTMG and EXTGCLK bits, set them
 # as appropriate.
 self._shift_reg[0] = _shift_in(self._shift_reg[0], self.outtmg)
 self._shift_reg[0] = _shift_in(self._shift_reg[0], self.extgclk)
 # Next byte contains remaining function control state and start of
 # brightness control bits.
 self._shift_reg[1] = 0x00
 self._shift_reg[1] = _shift_in(self._shift_reg[1], self.tmgrst)
 self._shift_reg[1] = _shift_in(self._shift_reg[1], self.dsprpt)
 self._shift_reg[1] = _shift_in(self._shift_reg[1], self.blank)
 # Top 5 bits from BC blue channel.
 self._shift_reg[1] <<= 5
 self._shift_reg[1] |= (self._bcb >> 2) & 0b11111
 # Next byte contains lower 2 bits from BC blue channel and upper 6
 # from BC green channel.
 self._shift_reg[2] = (self._bcb) & 0b11
 self._shift_reg[2] <<= 6
 self._shift_reg[2] |= (self._bcg >> 1) & 0b111111
 # Final byte contains lower 1 bit from BC green and 7 bits from BC
 # red channel.
 self._shift_reg[3] = self._bcg & 0b1
 self._shift_reg[3] <<= 7
 self._shift_reg[3] |= self._bcr & 0b1111111
 # The remaining bytes in the shift register are the channel PWM
 # values that have already been set by the user. Now write out the
 # the entire set of bytes. Note there is no latch or other
 # explicit line to tell the chip when finished, it expects 28 bytes.
 self._spi.write(self._shift_reg)
 finally:
 # Ensure the SPI bus is unlocked.
 self._spi.unlock()

[docs] def show(self):
 """Write out the current LED PWM state to the chip. This is only necessary if
 auto_show was set to false in the initializer.
 """
 self._write()

 # Define properties for global brightness control channels.
 @property
 def red_brightness(self):
 """The red brightness for all channels (i.e. R0, R1, R2, and R3). This is a 7-bit
 value from 0-127.
 """
 return self._bcr

 @red_brightness.setter
 def red_brightness(self, val):
 assert 0 <= val <= 127
 self._bcr = val
 if self.auto_show:
 self._write()

 @property
 def green_brightness(self):
 """The green brightness for all channels (i.e. G0, G1, G2, and G3). This is a
 7-bit value from 0-127.
 """
 return self._bcg

 @green_brightness.setter
 def green_brightness(self, val):
 assert 0 <= val <= 127
 self._bcg = val
 if self.auto_show:
 self._write()

 @property
 def blue_brightness(self):
 """The blue brightness for all channels (i.e. B0, B1, B2, and B3). This is a 7-bit
 value from 0-127.
 """
 return self._bcb

 @blue_brightness.setter
 def blue_brightness(self, val):
 assert 0 <= val <= 127
 self._bcb = val
 if self.auto_show:
 self._write()

 # Define index and length properties to set and get each channel as
 # atomic RGB tuples. This provides a similar feel as using neopixels.
 def __len__(self):
 """Retrieve the total number of LED channels available."""
 return 4 # Always 4 RGB channels on the chip.

 def __getitem__(self, key):
 # pylint: disable=no-else-return
 # Disable should be removed when refactor can be tested
 """Retrieve the R, G, B values for the provided channel as a
 3-tuple. Each value is a 16-bit number from 0-65535.
 """
 if key == 0:
 return (self.r0, self.g0, self.b0)
 elif key == 1:
 return (self.r1, self.g1, self.b1)
 elif key == 2:
 return (self.r2, self.g2, self.b2)
 elif key == 3:
 return (self.r3, self.g3, self.b3)
 else:
 raise IndexError

 def __setitem__(self, key, val):
 """Set the R, G, B values for the provided channel. Specify a
 3-tuple of R, G, B values that are each 16-bit numbers (0-65535).
 """
 assert 0 <= key <= 3 # Do this check here instead of later to
 # prevent accidentally keeping auto_show
 # turned off when a bad key is provided.
 assert len(val) == 3
 assert 0 <= val[0] <= 65535
 assert 0 <= val[1] <= 65535
 assert 0 <= val[2] <= 65535
 # Temporarily halt auto write to perform an atomic update of all
 # the channel values.
 old_auto_show = self.auto_show
 self.auto_show = False
 # Update appropriate channel values.
 if key == 0:
 self.r0, self.g0, self.b0 = val
 elif key == 1:
 self.r1, self.g1, self.b1 = val
 elif key == 2:
 self.r2, self.g2, self.b2 = val
 elif key == 3:
 self.r3, self.g3, self.b3 = val
 # Restore auto_show state.
 self.auto_show = old_auto_show
 # Write out new values if in auto_show state.
 if self.auto_show:
 self._write()

 All modules for which code is available

	adafruit_tlc59711

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Simple test

 		
 adafruit_tlc59711

 		
 Implementation Notes

_static/up.png

_static/up-pressed.png

