Source code for adafruit_bme680

# SPDX-FileCopyrightText: 2017 ladyada for Adafruit Industries
#
# SPDX-License-Identifier: MIT AND BSD-3-Clause

# We have a lot of attributes for this complex sensor.
# pylint: disable=too-many-instance-attributes
# pylint: disable=no_self_use

"""
`adafruit_bme680`
================================================================================

CircuitPython library for BME680 temperature, pressure and humidity sensor.


* Author(s): Limor Fried, William Garber, many others


Implementation Notes
--------------------

**Hardware:**

* `Adafruit BME680 Temp, Humidity, Pressure and Gas Sensor <https://www.adafruit.com/product/3660>`_

**Software and Dependencies:**

* Adafruit CircuitPython firmware for the supported boards:
  https://github.com/adafruit/circuitpython/releases
* Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
"""

import struct
import time
import math
from micropython import const


[docs] def delay_microseconds(nusec): """HELP must be same as dev->delay_us""" time.sleep(nusec / 1000000.0)
try: # Used only for type annotations. import typing # pylint: disable=unused-import from circuitpython_typing import ReadableBuffer from busio import I2C, SPI from digitalio import DigitalInOut except ImportError: pass __version__ = "0.0.0+auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_BME680.git" # I2C ADDRESS/BITS/SETTINGS NEW # ----------------------------------------------------------------------- _BME68X_ENABLE_HEATER = const(0x00) _BME68X_DISABLE_HEATER = const(0x01) _BME68X_DISABLE_GAS_MEAS = const(0x00) _BME68X_ENABLE_GAS_MEAS_L = const(0x01) _BME68X_ENABLE_GAS_MEAS_H = const(0x02) _BME68X_SLEEP_MODE = const(0) _BME68X_FORCED_MODE = const(1) _BME68X_VARIANT_GAS_LOW = const(0x00) _BME68X_VARIANT_GAS_HIGH = const(0x01) _BME68X_HCTRL_MSK = const(0x08) _BME68X_HCTRL_POS = const(3) _BME68X_NBCONV_MSK = const(0x0F) _BME68X_RUN_GAS_MSK = const(0x30) _BME68X_RUN_GAS_POS = const(4) _BME68X_MODE_MSK = const(0x03) _BME68X_PERIOD_POLL = const(10000) _BME68X_REG_CTRL_GAS_0 = const(0x70) _BME68X_REG_CTRL_GAS_1 = const(0x71) # I2C ADDRESS/BITS/SETTINGS # ----------------------------------------------------------------------- _BME680_CHIPID = const(0x61) _BME680_REG_CHIPID = const(0xD0) _BME68X_REG_VARIANT = const(0xF0) _BME680_BME680_COEFF_ADDR1 = const(0x89) _BME680_BME680_COEFF_ADDR2 = const(0xE1) _BME680_BME680_RES_HEAT_0 = const(0x5A) _BME680_BME680_GAS_WAIT_0 = const(0x64) _BME680_REG_SOFTRESET = const(0xE0) _BME680_REG_CTRL_GAS = const(0x71) _BME680_REG_CTRL_HUM = const(0x72) _BME680_REG_STATUS = const(0x73) _BME680_REG_CTRL_MEAS = const(0x74) _BME680_REG_CONFIG = const(0x75) _BME680_REG_MEAS_STATUS = const(0x1D) _BME680_REG_PDATA = const(0x1F) _BME680_REG_TDATA = const(0x22) _BME680_REG_HDATA = const(0x25) _BME680_SAMPLERATES = (0, 1, 2, 4, 8, 16) _BME680_FILTERSIZES = (0, 1, 3, 7, 15, 31, 63, 127) _BME680_RUNGAS = const(0x10) _LOOKUP_TABLE_1 = ( 2147483647.0, 2147483647.0, 2147483647.0, 2147483647.0, 2147483647.0, 2126008810.0, 2147483647.0, 2130303777.0, 2147483647.0, 2147483647.0, 2143188679.0, 2136746228.0, 2147483647.0, 2126008810.0, 2147483647.0, 2147483647.0, ) _LOOKUP_TABLE_2 = ( 4096000000.0, 2048000000.0, 1024000000.0, 512000000.0, 255744255.0, 127110228.0, 64000000.0, 32258064.0, 16016016.0, 8000000.0, 4000000.0, 2000000.0, 1000000.0, 500000.0, 250000.0, 125000.0, )
[docs] def bme_set_bits(reg_data, bitname_msk, bitname_pos, data): """ Macro to set bits data2 = data << bitname_pos set masked bits from data2 in reg_data """ return (reg_data & ~bitname_msk) | ((data << bitname_pos) & bitname_msk)
[docs] def bme_set_bits_pos_0(reg_data, bitname_msk, data): """ Macro to set bits starting from position 0 set masked bits from data in reg_data """ return (reg_data & ~bitname_msk) | (data & bitname_msk)
def _read24(arr: ReadableBuffer) -> float: """Parse an unsigned 24-bit value as a floating point and return it.""" ret = 0.0 # print([hex(i) for i in arr]) for b in arr: ret *= 256.0 ret += float(b & 0xFF) return ret
[docs] class Adafruit_BME680: """Driver from BME680 air quality sensor :param int refresh_rate: Maximum number of readings per second. Faster property reads will be from the previous reading.""" def __init__(self, *, refresh_rate: int = 10) -> None: """Check the BME680 was found, read the coefficients and enable the sensor for continuous reads.""" self._write(_BME680_REG_SOFTRESET, [0xB6]) time.sleep(0.005) # Check device ID. chip_id = self._read_byte(_BME680_REG_CHIPID) if chip_id != _BME680_CHIPID: raise RuntimeError("Failed to find BME680! Chip ID 0x%x" % chip_id) # Get variant self._chip_variant = self._read_byte(_BME68X_REG_VARIANT) self._read_calibration() # set up heater self._write(_BME680_BME680_RES_HEAT_0, [0x73]) self._write(_BME680_BME680_GAS_WAIT_0, [0x65]) self.sea_level_pressure = 1013.25 """Pressure in hectoPascals at sea level. Used to calibrate :attr:`altitude`.""" # Default oversampling and filter register values. self._pressure_oversample = 0b011 self._temp_oversample = 0b100 self._humidity_oversample = 0b010 self._filter = 0b010 # Gas measurements, as a mask applied to _BME680_RUNGAS self._run_gas = 0xFF self._adc_pres = None self._adc_temp = None self._adc_hum = None self._adc_gas = None self._gas_range = None self._t_fine = None self._last_reading = 0 self._min_refresh_time = 1 / refresh_rate self._amb_temp = 25 # Copy required parameters from reference bme68x_dev struct self.set_gas_heater(320, 150) # heater 320 deg C for 150 msec @property def pressure_oversample(self) -> int: """The oversampling for pressure sensor""" return _BME680_SAMPLERATES[self._pressure_oversample] @pressure_oversample.setter def pressure_oversample(self, sample_rate: int) -> None: if sample_rate in _BME680_SAMPLERATES: self._pressure_oversample = _BME680_SAMPLERATES.index(sample_rate) else: raise RuntimeError("Invalid oversample") @property def humidity_oversample(self) -> int: """The oversampling for humidity sensor""" return _BME680_SAMPLERATES[self._humidity_oversample] @humidity_oversample.setter def humidity_oversample(self, sample_rate: int) -> None: if sample_rate in _BME680_SAMPLERATES: self._humidity_oversample = _BME680_SAMPLERATES.index(sample_rate) else: raise RuntimeError("Invalid oversample") @property def temperature_oversample(self) -> int: """The oversampling for temperature sensor""" return _BME680_SAMPLERATES[self._temp_oversample] @temperature_oversample.setter def temperature_oversample(self, sample_rate: int) -> None: if sample_rate in _BME680_SAMPLERATES: self._temp_oversample = _BME680_SAMPLERATES.index(sample_rate) else: raise RuntimeError("Invalid oversample") @property def filter_size(self) -> int: """The filter size for the built in IIR filter""" return _BME680_FILTERSIZES[self._filter] @filter_size.setter def filter_size(self, size: int) -> None: if size in _BME680_FILTERSIZES: self._filter = _BME680_FILTERSIZES.index(size) else: raise RuntimeError("Invalid size") @property def temperature(self) -> float: """The compensated temperature in degrees Celsius.""" self._perform_reading() calc_temp = ((self._t_fine * 5) + 128) / 256 return calc_temp / 100 @property def pressure(self) -> float: """The barometric pressure in hectoPascals""" self._perform_reading() var1 = (self._t_fine / 2) - 64000 var2 = ((var1 / 4) * (var1 / 4)) / 2048 var2 = (var2 * self._pressure_calibration[5]) / 4 var2 = var2 + (var1 * self._pressure_calibration[4] * 2) var2 = (var2 / 4) + (self._pressure_calibration[3] * 65536) var1 = ( (((var1 / 4) * (var1 / 4)) / 8192) * (self._pressure_calibration[2] * 32) / 8 ) + ((self._pressure_calibration[1] * var1) / 2) var1 = var1 / 262144 var1 = ((32768 + var1) * self._pressure_calibration[0]) / 32768 calc_pres = 1048576 - self._adc_pres calc_pres = (calc_pres - (var2 / 4096)) * 3125 calc_pres = (calc_pres / var1) * 2 var1 = ( self._pressure_calibration[8] * (((calc_pres / 8) * (calc_pres / 8)) / 8192) ) / 4096 var2 = ((calc_pres / 4) * self._pressure_calibration[7]) / 8192 var3 = (((calc_pres / 256) ** 3) * self._pressure_calibration[9]) / 131072 calc_pres += (var1 + var2 + var3 + (self._pressure_calibration[6] * 128)) / 16 return calc_pres / 100 @property def relative_humidity(self) -> float: """The relative humidity in RH %""" return self.humidity @property def humidity(self) -> float: """The relative humidity in RH %""" self._perform_reading() temp_scaled = ((self._t_fine * 5) + 128) / 256 var1 = (self._adc_hum - (self._humidity_calibration[0] * 16)) - ( (temp_scaled * self._humidity_calibration[2]) / 200 ) var2 = ( self._humidity_calibration[1] * ( ((temp_scaled * self._humidity_calibration[3]) / 100) + ( ( ( temp_scaled * ((temp_scaled * self._humidity_calibration[4]) / 100) ) / 64 ) / 100 ) + 16384 ) ) / 1024 var3 = var1 * var2 var4 = self._humidity_calibration[5] * 128 var4 = (var4 + ((temp_scaled * self._humidity_calibration[6]) / 100)) / 16 var5 = ((var3 / 16384) * (var3 / 16384)) / 1024 var6 = (var4 * var5) / 2 calc_hum = (((var3 + var6) / 1024) * 1000) / 4096 calc_hum /= 1000 # get back to RH calc_hum = min(calc_hum, 100) calc_hum = max(calc_hum, 0) return calc_hum @property def altitude(self) -> float: """The altitude based on current :attr:`pressure` vs the sea level pressure (:attr:`sea_level_pressure`) - which you must enter ahead of time)""" pressure = self.pressure # in Si units for hPascal return 44330 * (1.0 - math.pow(pressure / self.sea_level_pressure, 0.1903)) @property def gas(self) -> int: """The gas resistance in ohms""" self._perform_reading() if self._chip_variant == 0x01: # taken from https://github.com/BoschSensortec/BME68x-Sensor-API var1 = 262144 >> self._gas_range var2 = self._adc_gas - 512 var2 *= 3 var2 = 4096 + var2 calc_gas_res = (10000 * var1) / var2 calc_gas_res = calc_gas_res * 100 else: var1 = ( (1340 + (5 * self._sw_err)) * (_LOOKUP_TABLE_1[self._gas_range]) ) / 65536 var2 = ((self._adc_gas * 32768) - 16777216) + var1 var3 = (_LOOKUP_TABLE_2[self._gas_range] * var1) / 512 calc_gas_res = (var3 + (var2 / 2)) / var2 return int(calc_gas_res) def _perform_reading(self) -> None: """Perform a single-shot reading from the sensor and fill internal data structure for calculations""" if time.monotonic() - self._last_reading < self._min_refresh_time: return # set filter self._write(_BME680_REG_CONFIG, [self._filter << 2]) # turn on temp oversample & pressure oversample self._write( _BME680_REG_CTRL_MEAS, [(self._temp_oversample << 5) | (self._pressure_oversample << 2)], ) # turn on humidity oversample self._write(_BME680_REG_CTRL_HUM, [self._humidity_oversample]) # gas measurements enabled if self._chip_variant == 0x01: self._write(_BME680_REG_CTRL_GAS, [(self._run_gas & _BME680_RUNGAS) << 1]) else: self._write(_BME680_REG_CTRL_GAS, [(self._run_gas & _BME680_RUNGAS)]) ctrl = self._read_byte(_BME680_REG_CTRL_MEAS) ctrl = (ctrl & 0xFC) | 0x01 # enable single shot! self._write(_BME680_REG_CTRL_MEAS, [ctrl]) new_data = False while not new_data: data = self._read(_BME680_REG_MEAS_STATUS, 17) new_data = data[0] & 0x80 != 0 time.sleep(0.005) self._last_reading = time.monotonic() self._adc_pres = _read24(data[2:5]) / 16 self._adc_temp = _read24(data[5:8]) / 16 self._adc_hum = struct.unpack(">H", bytes(data[8:10]))[0] if self._chip_variant == 0x01: self._adc_gas = int(struct.unpack(">H", bytes(data[15:17]))[0] / 64) self._gas_range = data[16] & 0x0F else: self._adc_gas = int(struct.unpack(">H", bytes(data[13:15]))[0] / 64) self._gas_range = data[14] & 0x0F var1 = (self._adc_temp / 8) - (self._temp_calibration[0] * 2) var2 = (var1 * self._temp_calibration[1]) / 2048 var3 = ((var1 / 2) * (var1 / 2)) / 4096 var3 = (var3 * self._temp_calibration[2] * 16) / 16384 self._t_fine = int(var2 + var3) def _read_calibration(self) -> None: """Read & save the calibration coefficients""" coeff = self._read(_BME680_BME680_COEFF_ADDR1, 25) coeff += self._read(_BME680_BME680_COEFF_ADDR2, 16) coeff = list(struct.unpack("<hbBHhbBhhbbHhhBBBHbbbBbHhbb", bytes(coeff[1:39]))) # print("\n\n",coeff) coeff = [float(i) for i in coeff] self._temp_calibration = [coeff[x] for x in [23, 0, 1]] self._pressure_calibration = [ coeff[x] for x in [3, 4, 5, 7, 8, 10, 9, 12, 13, 14] ] self._humidity_calibration = [coeff[x] for x in [17, 16, 18, 19, 20, 21, 22]] self._gas_calibration = [coeff[x] for x in [25, 24, 26]] # flip around H1 & H2 self._humidity_calibration[1] *= 16 self._humidity_calibration[1] += self._humidity_calibration[0] % 16 self._humidity_calibration[0] /= 16 self._heat_range = (self._read_byte(0x02) & 0x30) / 16 self._heat_val = self._read_byte(0x00) self._sw_err = (self._read_byte(0x04) & 0xF0) / 16 def _read_byte(self, register: int) -> int: """Read a byte register value and return it""" return self._read(register, 1)[0] def _read(self, register: int, length: int) -> bytearray: raise NotImplementedError() def _write(self, register: int, values: bytearray) -> None: raise NotImplementedError()
[docs] def set_gas_heater(self, heater_temp: int, heater_time: int) -> bool: """ Enable and configure gas reading + heater (None disables) :param heater_temp: Desired temperature in degrees Centigrade :param heater_time: Time to keep heater on in milliseconds :return: True on success, False on failure """ try: if (heater_temp is None) or (heater_time is None): self._set_heatr_conf(heater_temp or 0, heater_time or 0, enable=False) else: self._set_heatr_conf(heater_temp, heater_time) except OSError: return False return True
def _set_heatr_conf( self, heater_temp: int, heater_time: int, enable: bool = True ) -> None: # restrict to BME68X_FORCED_MODE op_mode: int = _BME68X_FORCED_MODE nb_conv: int = 0 hctrl: int = _BME68X_ENABLE_HEATER run_gas: int = 0 ctrl_gas_data_0: int = 0 ctrl_gas_data_1: int = 0 try: self._set_op_mode(_BME68X_SLEEP_MODE) self._set_conf(heater_temp, heater_time, op_mode) ctrl_gas_data_0 = self._read_byte(_BME68X_REG_CTRL_GAS_0) ctrl_gas_data_1 = self._read_byte(_BME68X_REG_CTRL_GAS_1) if enable: hctrl = _BME68X_ENABLE_HEATER if self._chip_variant == _BME68X_VARIANT_GAS_HIGH: run_gas = _BME68X_ENABLE_GAS_MEAS_H else: run_gas = _BME68X_ENABLE_GAS_MEAS_L else: hctrl = _BME68X_DISABLE_HEATER run_gas = _BME68X_DISABLE_GAS_MEAS self._run_gas = ~(run_gas - 1) ctrl_gas_data_0 = bme_set_bits( ctrl_gas_data_0, _BME68X_HCTRL_MSK, _BME68X_HCTRL_POS, hctrl ) ctrl_gas_data_1 = bme_set_bits_pos_0( ctrl_gas_data_1, _BME68X_NBCONV_MSK, nb_conv ) ctrl_gas_data_1 = bme_set_bits( ctrl_gas_data_1, _BME68X_RUN_GAS_MSK, _BME68X_RUN_GAS_POS, run_gas ) self._write(_BME68X_REG_CTRL_GAS_0, [ctrl_gas_data_0]) self._write(_BME68X_REG_CTRL_GAS_1, [ctrl_gas_data_1]) # HELP check this finally: self._set_op_mode(_BME68X_FORCED_MODE) def _set_op_mode(self, op_mode: int) -> None: """ * @brief This API is used to set the operation mode of the sensor """ tmp_pow_mode: int = 0 pow_mode: int = _BME68X_FORCED_MODE # Call until in sleep # was a do {} while() loop while pow_mode != _BME68X_SLEEP_MODE: tmp_pow_mode = self._read_byte(_BME680_REG_CTRL_MEAS) # Put to sleep before changing mode pow_mode = tmp_pow_mode & _BME68X_MODE_MSK if pow_mode != _BME68X_SLEEP_MODE: tmp_pow_mode &= ~_BME68X_MODE_MSK # Set to sleep self._write(_BME680_REG_CTRL_MEAS, [tmp_pow_mode]) # dev->delay_us(_BME68X_PERIOD_POLL, dev->intf_ptr) # HELP delay_microseconds(_BME68X_PERIOD_POLL) # Already in sleep if op_mode != _BME68X_SLEEP_MODE: tmp_pow_mode = (tmp_pow_mode & ~_BME68X_MODE_MSK) | ( op_mode & _BME68X_MODE_MSK ) self._write(_BME680_REG_CTRL_MEAS, [tmp_pow_mode]) def _set_conf(self, heater_temp: int, heater_time: int, op_mode: int) -> None: """ This internal API is used to set heater configurations """ if op_mode != _BME68X_FORCED_MODE: raise OSError("GasHeaterException: _set_conf not forced mode") rh_reg_data: int = self._calc_res_heat(heater_temp) gw_reg_data: int = self._calc_gas_wait(heater_time) self._write(_BME680_BME680_RES_HEAT_0, [rh_reg_data]) self._write(_BME680_BME680_GAS_WAIT_0, [gw_reg_data]) def _calc_res_heat(self, temp: int) -> int: """ This internal API is used to calculate the heater resistance value using float """ gh1: int = self._gas_calibration[0] gh2: int = self._gas_calibration[1] gh3: int = self._gas_calibration[2] htr: int = self._heat_range htv: int = self._heat_val amb: int = self._amb_temp temp = min(temp, 400) # Cap temperature var1: int = ((int(amb) * gh3) / 1000) * 256 var2: int = (gh1 + 784) * (((((gh2 + 154009) * temp * 5) / 100) + 3276800) / 10) var3: int = var1 + (var2 / 2) var4: int = var3 / (htr + 4) var5: int = (131 * htv) + 65536 heatr_res_x100: int = int(((var4 / var5) - 250) * 34) heatr_res: int = int((heatr_res_x100 + 50) / 100) return heatr_res def _calc_res_heat(self, temp: int) -> int: """ This internal API is used to calculate the heater resistance value """ gh1: float = float(self._gas_calibration[0]) gh2: float = float(self._gas_calibration[1]) gh3: float = float(self._gas_calibration[2]) htr: float = float(self._heat_range) htv: float = float(self._heat_val) amb: float = float(self._amb_temp) temp = min(temp, 400) # Cap temperature var1: float = (gh1 / (16.0)) + 49.0 var2: float = ((gh2 / (32768.0)) * (0.0005)) + 0.00235 var3: float = gh3 / (1024.0) var4: float = var1 * (1.0 + (var2 * float(temp))) var5: float = var4 + (var3 * amb) res_heat: int = int( 3.4 * ((var5 * (4 / (4 + htr)) * (1 / (1 + (htv * 0.002)))) - 25) ) return res_heat def _calc_gas_wait(self, dur: int) -> int: """ This internal API is used to calculate the gas wait """ factor: int = 0 durval: int = 0xFF # Max duration if dur >= 0xFC0: return durval while dur > 0x3F: dur = dur / 4 factor += 1 durval = int(dur + (factor * 64)) return durval
[docs] class Adafruit_BME680_I2C(Adafruit_BME680): """Driver for I2C connected BME680. :param ~busio.I2C i2c: The I2C bus the BME680 is connected to. :param int address: I2C device address. Defaults to :const:`0x77` :param bool debug: Print debug statements when `True`. Defaults to `False` :param int refresh_rate: Maximum number of readings per second. Faster property reads will be from the previous reading. **Quickstart: Importing and using the BME680** Here is an example of using the :class:`BMP680_I2C` class. First you will need to import the libraries to use the sensor .. code-block:: python import board import adafruit_bme680 Once this is done you can define your `board.I2C` object and define your sensor object .. code-block:: python i2c = board.I2C() # uses board.SCL and board.SDA bme680 = adafruit_bme680.Adafruit_BME680_I2C(i2c) You need to setup the pressure at sea level .. code-block:: python bme680.sea_level_pressure = 1013.25 Now you have access to the :attr:`temperature`, :attr:`gas`, :attr:`relative_humidity`, :attr:`pressure` and :attr:`altitude` attributes .. code-block:: python temperature = bme680.temperature gas = bme680.gas relative_humidity = bme680.relative_humidity pressure = bme680.pressure altitude = bme680.altitude """ def __init__( self, i2c: I2C, address: int = 0x77, debug: bool = False, *, refresh_rate: int = 10 ) -> None: """Initialize the I2C device at the 'address' given""" from adafruit_bus_device import ( # pylint: disable=import-outside-toplevel i2c_device, ) self._i2c = i2c_device.I2CDevice(i2c, address) self._debug = debug super().__init__(refresh_rate=refresh_rate) def _read(self, register: int, length: int) -> bytearray: """Returns an array of 'length' bytes from the 'register'""" with self._i2c as i2c: i2c.write(bytes([register & 0xFF])) result = bytearray(length) i2c.readinto(result) if self._debug: print("\t$%02X => %s" % (register, [hex(i) for i in result])) return result def _write(self, register: int, values: ReadableBuffer) -> None: """Writes an array of 'length' bytes to the 'register'""" with self._i2c as i2c: buffer = bytearray(2 * len(values)) for i, value in enumerate(values): buffer[2 * i] = register + i buffer[2 * i + 1] = value i2c.write(buffer) if self._debug: print("\t$%02X <= %s" % (values[0], [hex(i) for i in values[1:]]))
[docs] class Adafruit_BME680_SPI(Adafruit_BME680): """Driver for SPI connected BME680. :param ~busio.SPI spi: SPI device :param ~digitalio.DigitalInOut cs: Chip Select :param bool debug: Print debug statements when `True`. Defaults to `False` :param int baudrate: Clock rate, default is :const:`100000` :param int refresh_rate: Maximum number of readings per second. Faster property reads will be from the previous reading. **Quickstart: Importing and using the BME680** Here is an example of using the :class:`BMP680_SPI` class. First you will need to import the libraries to use the sensor .. code-block:: python import board from digitalio import DigitalInOut, Direction import adafruit_bme680 Once this is done you can define your `board.SPI` object and define your sensor object .. code-block:: python cs = digitalio.DigitalInOut(board.D10) spi = board.SPI() bme680 = adafruit_bme680.Adafruit_BME680_SPI(spi, cs) You need to setup the pressure at sea level .. code-block:: python bme680.sea_level_pressure = 1013.25 Now you have access to the :attr:`temperature`, :attr:`gas`, :attr:`relative_humidity`, :attr:`pressure` and :attr:`altitude` attributes .. code-block:: python temperature = bme680.temperature gas = bme680.gas relative_humidity = bme680.relative_humidity pressure = bme680.pressure altitude = bme680.altitude """ def __init__( self, spi: SPI, cs: DigitalInOut, baudrate: int = 100000, debug: bool = False, *, refresh_rate: int = 10 ) -> None: from adafruit_bus_device import ( # pylint: disable=import-outside-toplevel spi_device, ) self._spi = spi_device.SPIDevice(spi, cs, baudrate=baudrate) self._debug = debug super().__init__(refresh_rate=refresh_rate) def _read(self, register: int, length: int) -> bytearray: if register != _BME680_REG_STATUS: # _BME680_REG_STATUS exists in both SPI memory pages # For all other registers, we must set the correct memory page self._set_spi_mem_page(register) register = (register | 0x80) & 0xFF # Read single, bit 7 high. with self._spi as spi: spi.write(bytearray([register])) # pylint: disable=no-member result = bytearray(length) spi.readinto(result) # pylint: disable=no-member if self._debug: print("\t$%02X => %s" % (register, [hex(i) for i in result])) return result def _write(self, register: int, values: ReadableBuffer) -> None: if register != _BME680_REG_STATUS: # _BME680_REG_STATUS exists in both SPI memory pages # For all other registers, we must set the correct memory page self._set_spi_mem_page(register) register &= 0x7F # Write, bit 7 low. with self._spi as spi: buffer = bytearray(2 * len(values)) for i, value in enumerate(values): buffer[2 * i] = register + i buffer[2 * i + 1] = value & 0xFF spi.write(buffer) # pylint: disable=no-member if self._debug: print("\t$%02X <= %s" % (values[0], [hex(i) for i in values[1:]])) def _set_spi_mem_page(self, register: int) -> None: spi_mem_page = 0x00 if register < 0x80: spi_mem_page = 0x10 self._write(_BME680_REG_STATUS, [spi_mem_page])